Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Cell Stress Chaperones ; 29(3): 381-391, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38582327

The role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes remains unclear. In this study, we explored the role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes and identified its target genes and signaling pathways. H9c2 cells were cultured with or without 100 mM ethanol for 24 h. The differential expression of miR-92a-3p was verified in H9c2 cells through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To manipulate the expression of miR-92a-3p, both a mimic and an inhibitor were transfected into H9c2 cells. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and apoptosis-related antibodies were used for apoptosis detection through flow cytometry and Western blotting, respectively. Target genes were verified through RT-qPCR, Western blotting, and double luciferase reporter gene assays. miR-92a-3p was significantly overexpressed in ethanol-stimulated H9c2 cardiomyocytes (P < 0.001). After ethanol stimulation, H9c2 myocardial cells exhibited increased apoptosis. The apoptosis rate was higher in the miR-92a-3p mimic group than in the control group. However, the apoptosis rate was lower in the miR-92a-3p inhibitor group than in the control group, indicating that miR-92a-3p promotes the ethanol-induced apoptosis of H9c2 myocardial cells. RT-qPCR and Western blotting revealed that the miR-92a-3p mimic and inhibitor significantly regulated the mRNA and protein expression levels of mitogen- and stress-activated protein kinase 2 and cyclic AMP-responsive element-binding protein 3-like protein 2 (CREB3L2), suggesting that miR-92a-3p promotes the apoptosis of H9c2 cardiomyocytes by inhibiting the MSK2/CREB/Bcl-2 pathway. Therefore, the apoptosis of H9c2 cardiomyocytes increases after ethanol stimulation, and miR-92a-3p can directly target MSK2 and CREB3L2, thereby promoting the ethanol-induced apoptosis of H9c2 myocardial cells.

2.
J Hazard Mater ; 470: 134305, 2024 May 15.
Article En | MEDLINE | ID: mdl-38626677

Phosphorus-solubilizing bacteria (PSB) assisted phytoremediation of cadmium (Cd) pollution is an effective method, but the mechanism of PSB-enhanced in-situ remediation of Cd contaminated sediment by submerged plants is still rare. In this study, PSB (Leclercia adecarboxylata L1-5) was inoculated in the rhizosphere of Potamogeton crispus L. (P. crispus) to explore the effect of PSB on phytoremediation. The results showed that the inoculation of PSB effectively improved the Cd extraction by P. crispus under different Cd pollution and the Cd content in the aboveground and underground parts of P. crispus all increased. The µ-XRF images showed that most of the Cd was enriched in the roots of P. crispus. PSB especially showed positive effects on root development and chlorophyll synthesis. The root length of P. crispus increased by 51.7 %, 80.5 % and 74.2 % under different Cd pollution, and the Ca/Cb increased by 38.9 %, 15.2 % and 8.6 %, respectively. Furthermore, PSB enhanced the tolerance of P. crispus to Cd. The contents of soluble protein, MDA and H2O2 in 5 mg·kg-1 and 7 mg·kg-1 Cd content groups were decreased and the activities of antioxidant enzymes were increased after adding PSB. The results showed that the application of PSB was beneficial to the in-situ remediation of submerged plants.


Biodegradation, Environmental , Cadmium , Geologic Sediments , Phosphates , Plant Roots , Potamogetonaceae , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Geologic Sediments/microbiology , Potamogetonaceae/metabolism , Soil Pollutants/metabolism , Phosphates/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Antioxidants/metabolism , Rhizosphere , Bacteria/metabolism
3.
Sci Rep ; 14(1): 9649, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671074

The precision of workpiece machining is critically influenced by the geometric errors in the kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm designed to accurately identify and compensate for this geometric error. the approach begins with the construction of a forward kinematic model and an error model specific to the robot. Then the algorithm is adopted to identify and compensate for the geometric error. The method establishes a mapping interval around the initial candidate solutions derived from iterative applications of the Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method generates a diverse set of candidate solutions. These candidates are evaluated based on their fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation experiments have validated the proposed method's precision and effectiveness, demonstrating a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to existing state-of-the-art approaches. This process not only minimizes the truncation error inherent in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, simulation experiments on grind processes further validate the method's ability to significantly improve the quality of workpiece machining.

7.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38539822

The role of hypoxia in terms of affecting mammary epithelial cells (MECs) proliferation is closely associated with the milk synthesis of lactating mammals. Primary bovine MECs were cultured at 1, 6, 11, 16, and 21% O2 for 24 h. The results showed that cell proliferation decreased linearly, and hypoxic inducible factor (HIF)-1α expression increased linearly along with the declining O2. The linear increase in oxidative stress resulted in the accumulation of malondialdehyde and reactive oxygen species and decreased antioxidant enzyme activities following the reduced O2. Concerning mitochondria, the dynamin-related protein 1 showed improved expression, and optin atrophy protein 1 decreased along with the decreasing O2 gradient, which led to decreased mitochondrial mass and mitophagy emerging under 1% O2. Oxygen concentration-trend RNA-seq analysis was conducted. Specifically, HIF-1-MAPK (1% O2), PI3K-Akt-MAPK (6% O2), and p53-Hippo (11 and 16% O2) were found to primarily regulate cell proliferation in response to hypoxia compared with normoxia (21%), respectively. In conclusion, our study suggests that bMEC proliferation is suppressed in low-oxygen conditions, and is exacerbated following the reduced oxygen supply. The cross-oxygen gradient comparisons suggest that MAPK and Hippo, which are core pathways of mammary cell proliferation, are repressed by hypoxia via oxidative-stress-dependent signals.

8.
Int J Pharm ; 653: 123906, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38365069

Administering aerosol drugs through the nasal pathway is a common early treatment for children with adenoid hypertrophy (AH). To enhance therapeutic efficacy, a deeper understanding of nasal drug delivery in the nasopharynx is essential. This study uses an integrated experimental, numerical modelling approach to investigate the delivery process of both the aerosol mask delivery system (MDS) and the bi-directional delivery system (BDS) in the pediatric nasal airway with AH. The combined effect of respiratory flow rates and particle size on delivery efficiency was systematically analyzed. The results showed that the nasopharyngeal peak deposition efficiency (DE) for BDS was approximately 2.25-3.73 times higher than that for MDS under low-flow, resting and high-flow respiratory conditions. Overall nasopharyngeal DEs for MDS were at a low level of below 16 %. For each respiratory flow rate, the BDS tended to achieve higher peak DEs (36.36 % vs 9.74 %, 37.80 % vs 14.01 %, 34.58 % vs 15.35 %) at smaller particle sizes (15 µm vs 17 µm, 10 µm vs 14 µm, 6 µm vs 9 µm). An optimal particle size exists for each respiratory flow rate, maximizing the drug delivery efficiency to the nasopharynx. The BDS is more effective in delivering drug aerosols to the nasal cavity and nasopharynx, which is crucial for early intervention in children with AH.


Adenoids , Humans , Child , Administration, Intranasal , Aerosols/therapeutic use , Nasopharynx , Administration, Inhalation , Hypertrophy/drug therapy , Particle Size
9.
Neurochem Int ; 172: 105656, 2024 Jan.
Article En | MEDLINE | ID: mdl-38081419

Microglia, as the intrinsic immune cells in the brain, are activated following ischemic stroke. Activated microglia participate in the pathological processes after stroke through polarization, autophagy, phagocytosis, pyroptosis, ferroptosis, apoptosis, and necrosis, thereby influencing the injury and repair following stroke. It has been established that polarized M1 and M2 microglia exhibit pro-inflammatory and anti-inflammatory effects, respectively. Autophagy and phagocytosis in microglia following ischemia are dynamic processes, where moderate levels promote cell survival, while excessive responses may exacerbate neurofunctional deficits following stroke. Additionally, pyroptosis and ferroptosis in microglia after ischemic stroke contribute to the release of harmful cytokines, further aggravating the damage to brain tissue due to ischemia. This article discusses the different functional states of microglia in ischemic stroke research, highlighting current research trends and gaps, and provides insights and guidance for further study of ischemic stroke.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Microglia/metabolism , Brain Ischemia/metabolism , Ischemic Stroke/metabolism , Stroke/metabolism , Ischemia/metabolism
10.
Comput Biol Med ; 167: 107587, 2023 12.
Article En | MEDLINE | ID: mdl-37890422

To understand inhaled nanoparticle transport and deposition characteristics in pediatric nasal airways with adenoid hypertrophy (AH), with a specific emphasis on the olfactory region, virtual nanoparticle inhalation studies were conducted on anatomically accurate child nasal airway models. The computational fluid-particle dynamics (CFPD) method was employed, and numerical simulations were performed to compare the airflow and nanoparticle deposition patterns between nasal airways with nasopharyngeal obstruction before adenoidectomy and healthy nasal airways after virtual adenoidectomy. The influence of different inhalation rates and exhalation phase on olfactory regional nanoparticle deposition features was systematically analyzed. We found that nasopharyngeal obstruction resulted in significant uneven airflow distribution in the nasal cavity. The deposited nanoparticles were concentrated in the middle meatus, septum, inferior meatus and nasal vestibule. The deposition efficiency (DE) in the olfactory region decreases with increasing nanoparticle size (1-10 nm) during inhalation. After adenoidectomy, the pediatric olfactory region DE increased significantly while nasopharynx DE dramatically decreased. When the inhalation rate decreased, the deposition pattern in the olfactory region significantly altered, exhibiting an initial rise followed by a subsequent decline, reaching peak deposition at 2 nm. During exhalation, the pediatric olfactory region DE was substantially lower than during inhalation, and the olfactory region DE in the pre-operative models were found to be significantly higher than that of the post-operative models. In conclusions, ventilation and particle deposition in the olfactory region were significantly improved in post-operative models. Inhalation rate and exhalation process can significantly affect nanoparticle deposition in the olfactory region.


Adenoids , Nanoparticles , Humans , Child , Nasal Cavity , Smell , Hypertrophy , Computer Simulation
11.
Front Neurol ; 14: 1200534, 2023.
Article En | MEDLINE | ID: mdl-37576009

Background and purpose: Revascularization surgery for patients with moyamoya disease (MMD) is very complicated and has a high rate of postoperative complications. This pilot study aimed to prove the safety and efficacy of remote ischemic conditioning (RIC) in adult MMD patients undergoing revascularization surgery. Methods: A total of 44 patients with MMD were enrolled in this single-center, open-label, prospective, parallel randomized study, including 22 patients assigned to the sham group and 22 patients assigned to the RIC group. The primary outcome was the incidence of major neurologic complications during the perioperative period. Secondary outcomes were the modified Rankin Scale (mRS) score at discharge, at 90 days post-operation, and at 1 year after the operation. The outcome of safety was the incidence of adverse events associated with RIC. Blood samples were obtained to monitor the serum concentrations of cytokines (VEGF, IL-6). Results: No subjects experienced adverse events during RIC intervention, and all patients could tolerate the RIC intervention in the perioperative period. The incidence of major neurologic complications was significantly lower in the RIC group compared with the control group (18.2% vs. 54.5%, P = 0.027). The mRS score at discharge in the RIC group was also lower than the control group (0.86 ± 0.99 vs. 1.18 ± 1.22, P = 0.035). In addition, the serum IL-6 level increased significantly at 7 days after bypass surgery in the control group and the serum level of VEGF at 7 days post-operation in the RIC group. Conclusion: In conclusion, our study demonstrated the neuroprotective effect of RIC by reducing perioperative complications and improving cerebral blood flow in adult MMD patients undergoing revascularization surgery. Thus, RIC seems to be a potential treatment method for MMD. Clinical trial registration: ClinicalTrials.gov, identifier: NCT05860946.

12.
Article Zh | MEDLINE | ID: mdl-37549945

Objective:The nasal swell body(NSB) consists of the nasal septal cartilage, nasal bone, and swollen soft tissue, all of which are visible during endoscopic and imaging examinations. Although the function of the NSB remains uncertain, there is evidence to suggest that it plays a vital role in regulating nasal airflow and filtering inhaled air. Based on anatomical and histological evidence, it is hypothesized that the NSB is indispensable in these processes. This study aims to investigate the impact of NSB on nasal aerodynamics and the deposition of allergen particles under physiological conditions. Methods:The three-dimensional (3D) nasal models were reconstructed from computed tomography (CT) scans of the paranasal sinus and nasal cavity in 30 healthy adult volunteers from Northwest China, providing basis for the construction of models without NSB following virtual NSB-removal surgery. To analyze the distribution of airflow in the nasal cavity, nasal resistance, heating and humidification efficiency, and pollen particle deposition rate at various anatomical sites, we employed the computed fluid dynamics(CFD) method for numerical simulation and quantitative analysis. In addition, we created fully transparent segmented nasal cavity models through 3D printing, which were used to conduct bionic experiments to measure nasal resistance and allergen particle deposition. Results:①The average width and length of the NSB in healthy adults in Northwest China were (12.85±1.74) mm and (28.30±1.92) mm, respectively. ②After NSB removal, there was no significant change in total nasal resistance, and cross-sectional airflow velocity remained essentially unaltered except for a decrease in topical airflow velocity in the NSB plane. ③There was no discernible difference in the nasal heating and humidification function following the removal of the NSB; ④After NSB removal, the deposition fraction(DF) of Artemisia pollen in the nasal septum decreased, and the DFs post-and pre-NSB removal were(22.79±6.61)% vs (30.70±12.27)%, respectively; the DF in the lower airway increased, and the DFs post-and pre-NSB removal were(24.12±6.59)% vs (17.00±5.57)%, respectively. Conclusion:This study is the first to explore the effects of NSB on nasal airflow, heating and humidification, and allergen particle deposition in a healthy population. After NSB removal from the healthy nasal cavities: ①nasal airflow distribution was mildly altered while nasal resistance showed no significantly changed; ②nasal heating and humidification were not significantly changed; ③the nasal septum's ability to filter out Artemisia pollen was diminished, which could lead to increased deposition of Artemisia pollen in the lower airway.


Artemisia , Nasal Cavity , Adult , Humans , Cross-Sectional Studies , Nasal Cavity/surgery , Allergens , Pollen , Hydrodynamics
13.
J Cardiovasc Med (Hagerstown) ; 24(10): 737-745, 2023 10 01.
Article En | MEDLINE | ID: mdl-37642948

BACKGROUND: The cognitive impairment after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) has become a crucial clinical concern that cannot be ignored. However, studies on the early warning factors of cognitive impairment after PCI are still insufficient. METHODS: This study reviewed the postoperative cognitive function of 284 patients who underwent PCI in our hospital from June 2019 to June 2022. During the 21-day follow-up, all participants included in the analysis were divided into the cognitive impairment (CI) group (n = 82) and the noncognitive impairment (NCI) group (n = 186) according to their Montreal cognitive assessment (MoCA) scale. Participants' serum 25(OH)D3 levels on admission and serum neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP) and S100ß levels were measured 21 days after surgery. RESULTS: Age more than 65 years, hypertension, operation time longer than 60 min, left ventricular ejection fraction less than 50% and serum 25(OH)D3 less than 31.41 ng/ml were the risk factors for cognitive dysfunction in ACS patients 21 days after PCI. Serum levels of 25(OH)D3, NSE, S100ß and GFAP were significantly higher in patients with cognitive impairment than in patients without cognitive impairment. CONCLUSION: Postoperative serum NSE, S100ß and GFAP levels were significantly negatively correlated with serum 25(OH)D3 levels at admission. The serum 25(OH)D3 level is a risk factor and predictor of cognitive impairment in patients with ACS after PCI.


Acute Coronary Syndrome , Cognitive Dysfunction , Percutaneous Coronary Intervention , Humans , Aged , Vitamin D , Acute Coronary Syndrome/diagnosis , Percutaneous Coronary Intervention/adverse effects , Stroke Volume , Ventricular Function, Left , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology
14.
Nutr Cancer ; 75(8): 1673-1686, 2023.
Article En | MEDLINE | ID: mdl-37334819

The previous documentation has shown the role of resistant starch in promoting intestinal health, while the effect of starch-lipid complex (RS5) on colitis remains unclear. This study aimed to investigate the effect and potential mechanism of RS5 in colitis. We prepared RS5 complexes by combining pea starch with lauric acid. Mice with dextran sulfate sodium-induced colitis were treated with either RS5 (3.25 g/kg) or normal saline (10 mL/kg) for seven days, and the effects of pea starch-lauric acid complex on mice were observed. The RS5 treatment significantly attenuated weight loss, splenomegaly, colon shortening, and pathological damage in mice with colitis. Compare with the DSS group, cytokines levels, such as tumor necrosis factor-α and interleukin-6 in both serum and colon tissue was significantly decreased in RS5 treatment group, while the gene expression of interleukin-10 and the expression of mucin 2, zonula occludens-1, Occludin, and claudin-1 in the colon was significantly upregulated in RS5 treatment group. In addition, RS5 treatment altered the gut microbiota structure of colitis mice by increasing the abundance of Bacteroides and decreasing Turicibacter, Oscillospira, Odoribacter, and Akkermansia. The dietary composition could be exploited to manage colitis by attenuating inflammation, restoring the intestinal barrier, and regulating gut microbiota.


Colitis , Pisum sativum , Animals , Mice , Dextran Sulfate/toxicity , Starch/adverse effects , Starch/metabolism , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Colon/metabolism , Disease Models, Animal
15.
Nat Commun ; 14(1): 3643, 2023 06 20.
Article En | MEDLINE | ID: mdl-37339977

Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.


Fatty Liver , Nanoparticles , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Antioxidants/metabolism , Lipid Metabolism , Reactive Oxygen Species/metabolism , Liver/metabolism , Fatty Liver/metabolism , Hepatocytes/metabolism , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/metabolism , Mice, Inbred C57BL
16.
Biomech Model Mechanobiol ; 22(4): 1163-1175, 2023 Aug.
Article En | MEDLINE | ID: mdl-37256522

To improve the diagnostic accuracy of adenoid hypertrophy (AH) in children and prevent further complications in time, it is important to study and quantify the effects of different degrees of AH on pediatric upper airway (UA) aerodynamics. In this study, based on computed tomography (CT) scans of a child with AH, UA models with different degrees of obstruction (adenoidal-nasopharyngeal (AN) ratio of 0.9, 0.8, 0.7, and 0.6) and no obstruction (AN ratio of 0.5) were constructed through virtual surgery to quantitatively analyze the aerodynamic characteristics of UA with different degrees of obstruction in terms of the peak velocity, pressure drop (△P), and maximum wall shear stress (WSS). We found that two obvious whirlpools are formed in the anterior upper part of the pediatric nasal cavity and in the oropharynx, which is caused by the sudden increase in the nasal cross-section area, resulting in local flow separation and counterflow. In addition, when the AN ratio was ≥ 0.7, the airflow velocity peaked at the protruding area in the nasopharynx, with an increase 1.1-2.7 times greater than that in the nasal valve area; the △P in the nasopharynx was significantly increased, with an increase 1.1-6.8 times greater than that in the nasal cavity; and the maximum WSS of the posterior wall of the nasopharynx was 1.1-4.4 times larger than that of the nasal cavity. The results showed that the size of the adenoid plays an important role in the patency of the pediatric UA.


Adenoids , Humans , Child , Adenoids/diagnostic imaging , Hydrodynamics , Nose , Nasopharynx/diagnostic imaging , Hypertrophy
17.
Immun Inflamm Dis ; 11(2): e788, 2023 Feb.
Article En | MEDLINE | ID: mdl-36840497

BACKGROUND: Chronic rhinosinusitis (CRS) is a chronic mucosal inflammation of the nasal cavity and sinuses. It is classified into CRS without nasal polyps and CRS with nasal polyps (CRSwNP). CRSwNP has high recurrence, especially CRSwNP with massive eosinophil infiltration which is mediated by type 2 inflammatory response. Melatonin is a hormone secreted by the pineal gland, it has powerful antioxidant and anti-inflammatory effects in addition to regulating biological rhythms. There are no studies on melatonin for the treatment of CRS, so we aimed to explore whether melatonin could be used for the treatment of CRS. MATERIALS AND METHODS: In this study, we used melatonin to treat a cell model of CRS. Subsequently, MTT assay was performed to examine the cell viability of human nasal epithelial cells (HNEpCs), a reactive oxygen species (ROS) kit to detect ROS production, a malondialdehyde (MDA) kit to detect the MDA content in the cell culture supernatant, and an apoptosis kit and Western blot analysis to detect apoptosis. The expressions of Nrf2, HO-1, IL-33, TSLP, and IL-25 were detected by Western blot analysis. RESULTS: Melatonin improved the viability of HNEpCs, reduced lipopolysaccharide-induced ROS, reduced the MDA content, and inhibited their apoptosis. More importantly, melatonin reduced the expression of IL-33 and TSLP, an important phenomenon for the treatment of CRSwNP. CONCLUSION: Melatonin protects HNEpCs from damage in inflammation and reduces IL-33 and TSLP expression of HNEpCs.


Melatonin , Nasal Polyps , Rhinitis , Sinusitis , Humans , Cytokines/metabolism , Melatonin/metabolism , Rhinitis/metabolism , Reactive Oxygen Species/metabolism , Interleukin-33/metabolism , Sinusitis/metabolism , Epithelial Cells/metabolism , Inflammation/metabolism
18.
Acta Otolaryngol ; 143(2): 170-175, 2023 Feb.
Article En | MEDLINE | ID: mdl-36705254

BACKGROUND: Chronic rhinosinusitis with polyps (CRSwNP) is a subtype of chronic rhinosinusitis and is highly prone to recurrence; therefore, it is urgent to find appropriate markers to predict recurrence of CRSwNP after surgery. PURPOSE: We aim to investigate the expression of HO-1 in CRSwNP and assess its value of predicting postoperative recurrence of CRSwNP. METHODS: We recruited 77 participants and collected clinical data of all. We use Immunohistochemical staining to determine the expression of HO-1 in tissues. We use Spearman correlation test to analyze the correlation between HO-1 positive cell count and clinical score, and ROC curve to assess the value of HO-1 positive cell count in predicting recurrence of CRSwNP. RESULTS: HO-1 positive cells were macrophages and significantly increased in CRSwNP; HO-1 positive cell count was negatively correlated with preoperative SNOT-22 score; HO-1 can predict postoperative recurrence of CRSwNP, AUC = 0.80, p = 0.004. CONCLUSION: HO-1 is a biochemical marker of CRSwNP and can predict postoperative recurrence of CRSwNP.


Nasal Polyps , Rhinitis , Sinusitis , Humans , Biomarkers , Chronic Disease , Nasal Polyps/complications , Nasal Polyps/diagnosis , Nasal Polyps/surgery , Recurrence , Rhinitis/complications , Rhinitis/diagnosis , Rhinitis/surgery , Sinusitis/complications , Sinusitis/diagnosis , Sinusitis/surgery
19.
Cell Signal ; 101: 110500, 2023 01.
Article En | MEDLINE | ID: mdl-36270475

Hypoxia-induced decrease in cisplatin (CDDP) sensitivity in human osteosarcoma (OS) is a significant obstacle to effective chemotherapy. Recently, mitophagy has been shown to be associated with CDDP sensitivity. However, whether it regulates hypoxia-induced decreases in CDDP sensitivity in OS and the underlying mechanisms remain unknown. In this study, we found that hypoxia activated mitophagy and suppressed mitophagy with specific inhibitors, mitochondrial division inhibitor-1 (Mdivi-1) or lysosome inhibitor chloroquine (CQ), which inhibited CDDP-induced apoptosis in hypoxic U-2OS and MG-63 cells. In addition, hypoxia upregulated the phosphorylation level of FUN14 domain-containing protein 1 (FUNDC1), whereas the activation of mitophagy and decreased CDDP sensitivity were inhibited by transfection with FUNDC1 small interfering RNA (siRNA). Hypoxia treatment also led to the up-regulation of heat shock protein 90 (HSP90), whereas HSP90 siRNA inhibited FUNDC1-mediated activation of mitophagy and decreased CDDP sensitivity. Furthermore, activation of Unc-51 like autophagy activating kinase 1 (Ulk1) was found in U-2OS and MG-63 cells after induction of hypoxia. Overexpression of Ulk1 prevented the inhibitory effect of HSP90 siRNA on the activation of FUNDC1 and mitophagy and decreased CDDP sensitivity in hypoxic U-2OS and MG-63 cells. Finally, hypoxia induced the activation of forkhead box transcription factor 3a (FOXO3a), whereas FOXO3a siRNA inhibited hypoxia-induced HSP90 up-regulation, Ulk1 activation, and FUNDC1-mediated activation of mitophagy, and decreased CDDP sensitivity in U-2OS and MG-63 cells. Using a chromatin immunoprecipitation (ChIP) assay, we confirmed that FOXO3a binds to the HSP90 promoter region. In conclusion, our findings suggest that hypoxia alleviates CDDP-induced apoptosis by activating mitophagy through the FOXO3a/HSP90/Ulk1/FUNDC1 signaling pathway in OS cells.


Bone Neoplasms , Osteosarcoma , Humans , Mitophagy/physiology , Cisplatin/pharmacology , Mitochondrial Proteins/metabolism , Up-Regulation , RNA, Small Interfering/metabolism , Membrane Proteins/metabolism , Cell Hypoxia , Osteosarcoma/drug therapy , Apoptosis , Hypoxia
20.
Animals (Basel) ; 12(12)2022 Jun 08.
Article En | MEDLINE | ID: mdl-35739820

The blood gas profile is a routine method in the rapid disease diagnosis of farm animals, yet its potential in evaluating mammary health status of dairy cows remains to be investigated. This study was conducted to learn the potential of the blood gas parameter regarding the mammary gland health status in lactating dairy cows. Twenty animals were divided into two groups, the H-SCC group (milk SCC > 122 k/mL) and L-SCC group (milk SCC < 73.8 k/mL), to compare blood gas profiles from different blood vessels and to identify the key parameters associated with milk somatic cell count. H-SCC cows are higher in malondialdehyde content, but lower in SOD and T-AOC activities in the milk, compared to the L-SCC group. In terms of blood gas parameters, most differ across the three vessels, including K+, CO2 pressure, O2 pressure, HCO3−, base excess in the extracellular fluid compartment, and saturation of O2. The Pearson correlation analysis showed that oxygen-related variables in the mammary vein, including oxygen concentrations, O2 pressure, and saturation of O2, are negatively correlated with levels of malondialdehyde, lactate dehydrogenase, and plasmin in the milk. Our study revealed that oxygen-related variables in the mammary vein can be a marker in suggesting mammary-gland health status in high-yielding cows.

...